home *** CD-ROM | disk | FTP | other *** search
- What Analysis Should You Use?
- @1,You want to get descriptive statistics of SINGLE variable(s)
- @2,You want to get DESCRIPTIVE statistics of two RELATED variables
- @3,You want to COMPARE two variables, Independent or Paired
- @4,You want to COMPARE more than two variables, Independent or Related
- @5,You want to examine ASSOCIATION between two variables
- @6,You want to examine ASSOCIATION between more than two variables
- @7,Definitions of Terms Used
- ##1
- DESCRIPTIVE STATISTICS & GRAPHS PROCEDURES TO USE
- ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ
- ⁄ƒ Data is ƒƒƒƒƒ> Mean, S.D., Box Plot, 5 number summary
- ≥ Normal Histogram, Conf. Interval
- ≥ (Stat Module, B, C, & E)
- ≥
- ≥ƒ Data not ƒƒƒƒ> Median, Box Plot
- ≥ Normal Histogram, 5 number summary
- One Sample ƒƒƒ≥ (Stat Module, B & E)
- ≥ƒ Data is
- ≥ Categoricalƒƒ> Frequencies, Pictogram
- ≥ (Crosstabs Module, B)
- ≥
- ¿ƒ Observationsƒ> Time Series Plot
- Over Time (Stat Module, option G)
-
- ##2
- DESCRIPTIVE STATISTICS & GRAPHS PROCEDURES TO USE
- ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ
- ⁄ƒ Data areƒƒƒƒƒ> Pearson's Corr. Coeff. &
- ≥ Normal XƒY Scatterplot
- ≥ (Stat Module, option F &
- ≥ Regression Module option B & D)
- ≥
- Two Samplesƒƒƒƒ≥ƒ Data notƒƒƒƒƒ> Spearmans Corr. Coeff. &
- (Related) ≥ Normal XƒY Scatterplot
- ≥ (Stat Module, option F &
- ≥ Regression Module, option D)
- ≥
- ¿ƒ Data areƒƒƒƒƒ> Crosstabulations and
- Qualitative 3ƒD Bar Chart
- (Crosstabs Module,
- options D & E)
-
- ##3
- COMPARISON TESTS ƒ TWO SAMPLES TEST TO USE
- ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ
- ⁄ƒ Data areƒƒƒƒƒ> Paired tƒtest
- ≥ Normal (tƒtest & ANOVA Module,
- ≥ Option C)
- ≥ƒƒƒSamplesƒƒƒ≥ƒ Data not ƒƒƒƒ> Freidmans Test
- ≥ Related ≥ Normal (Non-Parametrics Module
- ≥ ≥ Option C)
- ≥ ¿ƒ Data are
- ≥ Dichotomousƒƒ> McNemar's test
- Two Samples ƒƒ≥ (Crosstabs Module,
- ≥ Option F)
- ≥ ⁄ƒ Data areƒƒƒƒƒ> Ind. Group tƒtest
- ≥ ≥ Normal (tƒtest, ANOVA Module,
- ≥ ≥ option B)
- ≥ ≥
- ≥ƒƒSamplesƒƒƒƒ≥ƒ Data notƒƒƒƒƒ> MannƒWhitney U test
- Independent≥ Normal (Non-Parametrics Module,
- ≥ Option B)
- ≥
- ¿ƒ Data areƒƒƒƒƒ> ChiƒSquare (Homogeniety)
- Qualitative (Crosstabs Module,
- option D)
- ##4
- COMPARING MORE THAN TWO SAMPLES TEST TO USE
- ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ
-
- ⁄ƒ Data areƒƒƒƒƒ> Repeated Measures ANOVA
- ≥ Normal (tƒtest & ANOVA Module,
- ≥ Option C)
- ≥
- ⁄ƒSamplesƒƒƒ≥ƒ Data not ƒƒƒƒ> Friedman ANOVA
- ≥ Related ≥ Normal (Non-Parametrics Module,
- ≥ ≥ Option C)
- ≥ ¿ƒ Data are
- ≥ Dichotomousƒƒ> Cochran's Q test
- ≥ (Non-Parametrics Module,
- More than ≥ Option D)
- Two Samples ƒƒ≥ ⁄ƒ Data areƒƒƒƒƒ> Independent Group ANOVA
- ≥ ≥ Normal (tƒtest & ANOVA Module,
- ≥ ≥ Option B)
- ≥ ≥
- ¿ƒSamplesƒƒƒ≥ƒ Data notƒƒƒƒƒ> KruskalƒWallis
- Independent≥ Normal (Non-Parametrics Module,
- ≥ Option B)
- ≥
- ¿ƒ Data areƒƒƒƒƒ> ChiƒSquare Test
- Qualitative (Crosstabs Module,
- Option D)
- ##5
-
- TESTING ASSOCIATION BETWEEN TWO VARIABLES PROCEDURE TO USE
- ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ
-
- ⁄ƒ Data areƒƒƒƒƒ> Pearson Correlation
- ≥ Normal Simple Linear Regression
- ≥ (Regression Module
- ≥ Option B or D)
- ≥
- Two Samples Relatedƒƒƒƒ≥ƒ Data not ƒƒƒƒ> Spearman Correlation
- ≥ Normal (Regression Module,
- ≥ option D)
- ≥ƒ Data are
- ≥ Qualitativeƒƒ> Chi-Square (Independence)
- ≥ (Crosstabs Module,
- ≥ Option D)
- ¿ƒ Data mixedƒƒƒƒ> Spearman Correlation
- Normal, Not (Regression Module,
- Normal option D)
- ##6
-
-
- MORE THAN TWO ASSOCIATED VARIABLES PROCEDURE TO USE
- ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ
-
- ⁄ƒ Data areƒƒƒƒƒ> Multiple Regression
- ≥ Normal (Regression Module,
- ≥ Option C)
- ≥
- More than 2 Samples ƒƒ≥ƒ Data notƒƒƒƒƒ> Kendall partial rankƒ
- Related ≥ Normal correlation
- ≥ (N.A.)
- ≥
- ¿ƒ Data areƒƒƒƒƒ> Discriminant Analysis
- Qualitative (N.A.)
-
-
-
- ##7
- DEFINITIONS
-
- NORMAL refers to data that are well approximated by a normal (Gaussian)
- distribution.
-
- NOT NORMAL refers to quantative data that are not normally distributed.
-
- CATEGORICAL refers to nominal data, such as male/female or brown/blue/black.
-
- QUANTITATIVE refers to data that are numeric such as height, batting average,
- number of people per household, etc.
-
- QUALITATIVE refers to data that describe attributes such as hair color,
- socioeconomic class, sex, etc.
-
- ASSOCIATED refers to variables where knowledge of one helps predict the
- other.
-
- INDEPENDENT refers to variables where knowledge of one does not help predict
- others. Usually, samples from unrelated populations.
- (continued)
- ##8
- DEFINITIONS
- (Continued)
-
- RELATED refers to samples where multiple measures are taken on the same or
- related entities. For example, before after weights for a diet, or heights of
- twins.
-
- DICHOTOMOUS refers to data that are categorical and can take on only one of
- two possible states. For example, yes,/no or on/off. VARIABLE refers to the
- observed measure, such as height, hair color, etc.
-